基礎力学演習 期末試験

2017年7月24日 担当:佐藤純

問題 1 質量 m の物体が x 軸上を一次元運動している. 物体は場所 x で外力 F(x) を受けるとする.

- (1-1) 物体の運動方程式を書け.
- **(1-2)** 外力のポテンシャルU(x) はF(x) を使ってどう書けるか.
- (1-3) 時刻 $t=t_1,t_2$ における物体の位置を x_1,x_2 ,速度を v_1,v_2 とすると, $\frac{1}{2}mv_1^2+U(x_1)=\frac{1}{2}mv_2^2+U(x_2)$ が成り立つこと (エネルギー保存則) を示せ.

問題 $\mathbf{2}$ 質量 m の物体が xy 面内を運動している.物体の位置を極座標で $\vec{r} = \begin{pmatrix} r\cos\theta \\ r\sin\theta \end{pmatrix}$ と表す.

- (2-1) 物体の速度 \vec{v} を \hat{r} , $\hat{\theta}$ を用いて表せ.
- (2-2) 物体の運動量 \overrightarrow{P} を求めよ.
- (2-3) 物体の角運動量 \overrightarrow{L} を求めよ.

問題 $\mathbf{3}$ 質量 m の物体が xy 面内を運動している.物体は外力 $F(x,y)=\begin{pmatrix} -kx\\ -mq \end{pmatrix}$ を受けるとする.

- (3-1) 物体の運動方程式を書け.
- (3-2) 運動方程式の一般解を求めよ. (答えのみでよい)
- (3-3) 時刻 t=0 で $(x,y)=(0,0), (\dot{x},\dot{y})=(v_0,0)$ という初期条件のもと、運動を決定せよ.
- (3-4) この外力は保存力であることを示せ.
- (3-5) 原点を基準点として、ポテンシャルU(x,y)を求めよ.

問題4 質量が m_1 , m_2 の 2 つのおもり 1, 2 を, バネ定数 k, 自然長 ℓ のバネの両端につないで, 机の上に置いてある。最初おもり 1 は x=0, おもり 2 は $x=\ell$ にあり, 静止していたとする。時刻 t=0 に, おもり 2 に初速度 v_0 を与えた。摩擦,空気抵抗などは無視できるものとする。

- (4-1) 2つのおもりの位置をそれぞれ x_1, x_2 として,運動方程式を書き下せ.
- (4-2) 重心座標の運動方程式を書き,これを解け.
- (4-3) 相対座標の運動方程式を書き,これを解け.

問題5 以下の設問に答えよ.

- **(5-1)** 質量 m_1, m_2, \dots, m_N の N 個の質点が場所 $\vec{r_1}, \vec{r_2}, \dots, \vec{r_N}$ にあるとする.重力加速度を方向も含めて \vec{g} とするとき,重力がこれらの質点に及ぼすトルクの合計は,全質量が重心にあるときの重力のトルクに等しいことを示せ.
- (5-2) 半径 a, 質量 m の球の、中心を通る軸のまわりの慣性モーメントを求めよ.
- (5-3) 地上の高い地点から質量 m のボールをそっと放し、ボールを落下させる.その際、ボールは速度に比例する空気抵抗を受けるとし、その比例定数を γ とする.時刻 t における物体の速度 v(t) を求め、グラフを描け.
- (5-4) バネ定数 k のバネの一端に質量 m のおもりを付け、他端を固定する.おもりが机の上を動く際に、速度に比例した十分に小さい摩擦力が働くとし、比例定数を γ とする.おもりにつり合いの位置で初速度 v_0 を与えた時、その後のおもりの運動を決定し、結果をグラフに表せ.