
数学演習 I 第6回 ベクトル

2015年5月20日 担当:佐藤 純

問題1 右図について以下の問いに答えよ.

- (1-1) \vec{b} を \vec{a} を用いて表せ .
- (1-2) \vec{c} を \vec{a} を用いて表せ.
- (1-3) $\vec{a} + \vec{d}$ と等しいベクトルを , \vec{e} , \vec{f} , \vec{q} , \vec{h} の中から選べ .

問題2 以下の計算をせよ.

(2-1)
$$\overrightarrow{OA} - \overrightarrow{CA} + \overrightarrow{CB} - \overrightarrow{DB}$$

(2-2)
$$\overrightarrow{DC} + \overrightarrow{ED} + \overrightarrow{BA} + \overrightarrow{CB}$$

(2-3)
$$\overrightarrow{PQ} + \overrightarrow{QR} + \overrightarrow{RP}$$

(2-4)
$$\overrightarrow{PQ} - \overrightarrow{RQ} - \overrightarrow{SR} + \overrightarrow{SP}$$

$$(2-5) \ \frac{3\vec{a} - 5\vec{b}}{2} + \frac{2\vec{a} - 3\vec{b}}{3}$$

(2-6)
$$\frac{2\vec{a}+3\vec{b}}{5}-\frac{4\vec{a}-3\vec{b}}{3}$$

(2-7)
$$-\frac{4\vec{x}-5}{2}-\frac{2\vec{x}+3}{4}$$

「問題 $oldsymbol{3}$ $ec{a}=(3,-4),\,ec{b}=(-3,9),\,ec{c}=(5,12)$ であるとき,次のベクトルの成分および大きさを求めよ.

(3-1)
$$-5\vec{a}$$

(3-2)
$$\vec{a} + \vec{b}$$

(3-3)
$$\vec{a} - \vec{b} + \vec{c}$$

(3-4)
$$\frac{\vec{c}}{2}$$

(3-5)
$$\frac{3\vec{a} - 2\vec{b} - 3\vec{c}}{11}$$

問題 $oxed{a}$ 以下の $oxed{2}$ つのベクトルについて,内積 $ec{a}\cdotec{b}$ および $oxed{2}$ つのベクトルのなす角 heta を求めよ.

(4-1)
$$\vec{a} = (-1, 2), \vec{b} = (1, 3)$$
 (4-2) $\vec{a} = (4, -1), \vec{b} = (3, 12)$ **(4-3)** $\vec{a} = (\sqrt{3}, 1), \vec{b} = (2, 2\sqrt{3})$

問題5 以下の問いに答えよ.

- (5-1) 2つのベクトル $\vec{a}=(9,x),\, \vec{b}=(-3,2)$ が平行である時,x の値を求めよ.
- (5-2) 2 つのベクトル $\vec{a}=(2,x),\, \vec{b}=(-6,5)$ が垂直である時,x の値を求めよ.
- (5-3) $\vec{a}=(2,-3),\, \vec{b}=(1,4)$ であるとき , $|\vec{a}+t\vec{b}|$ を最小にするt の値を求めよ .
- (5-4) $|\vec{a}| = 3\sqrt{2}, |\vec{b}| = 2\sqrt{2}, |\vec{a} 2\vec{b}| = \sqrt{6}$ であるとき , $\vec{a} + \vec{b}$ と $\vec{a} t\vec{b}$ が垂直となるように t の値を定めよ .

[問題 $oldsymbol{6}$ △ABC の重心は , 3 点 A, B, C の "平均" として $\overrightarrow{OG} = \frac{\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}}{3}$ と表される . ただし , 点 O は任意の基準点である .

- (6-1) \overrightarrow{AG} を \overrightarrow{AB} , \overrightarrow{AC} で表せ.
- (6-2) AGとBCの交点をHとするとき,BH=HC,AG:GH=2:1となることを示せ.