担当:佐藤 純

問題1

2次元ベクトル \vec{a} , \vec{b} が、成分表示で $\vec{a}=(1,2)$, $\vec{b}=(-1,1)$ と与えられているとする。

- (1-1) \vec{a} , \vec{b} , \vec{a} + \vec{b} , \vec{a} \vec{b} を図示せよ。
- (1-2) $3\vec{a} 2\vec{b}$ を計算せよ。
- (1-3) 内積 $\vec{a} \cdot \vec{b}$ を計算せよ。
- (1-4) ベクトル \vec{a} , \vec{b} のなす角を θ とするとき、 $\cos\theta$, $\sin\theta$, $\tan\theta$ の値を求めよ。
- (1-5) ベクトル \vec{a} , \vec{b} の線形結合でベクトル $\vec{x}=\alpha\vec{a}+\beta\vec{b}$ を作る。このとき、 $\vec{x}=0$ ならば $\alpha=\beta=0$ となることを示せ。
- (1-6) $\vec{c}=(2,4)$ とする。ベクトル \vec{a} , \vec{c} の線形結合でベクトル $\vec{x}=\alpha\vec{a}+\beta\vec{c}$ を作る。このとき、 $\vec{x}=0$ であっても必ずしも $\alpha=\beta=0$ とはならないことを示せ。

問題 2

ベクトル \vec{a} , \vec{b} が、 $|\vec{a}| = 2$, $|\vec{b}| = 3$, $|\vec{a} + \vec{b}| = 4$ を満たすとする。

- (2-1) 内積 $\vec{a} \cdot \vec{b}$ を計算せよ。
- (2-2) ベクトル \vec{a} , \vec{b} のなす角を θ とするとき、 $\tan \theta$ の値を求めよ。
- (2-3) $|\vec{a}-2\vec{b}|$ を計算せよ。

問題3

ゼロでない 2 つのベクトル \vec{a} , \vec{b} に対し、 $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$ が成り立つとき、ベクトル \vec{a} , \vec{b} は直交することを示せ。

問題4

- 3 次元空間に、点 P: (2,-3,1) と、ベクトル $\vec{a}=(1,3,-2),$ $\vec{b}=(-3,1,-1)$ がある。
- (4-1) 2 つのベクトル \vec{a} , \vec{b} に共に垂直なベクトルを一つ、求めよ。
- (4-2) 点 P を通り、ベクトル \vec{a} に平行な直線の方程式を求めよ。
- (4-3) 点 P を通り、ベクトル \vec{a} に垂直な平面の方程式を求めよ。