基礎力学演習 第12回 剛体のつり合い

2020年1月10日 担当:佐藤純

- 問題 1 質量 m_1 の質点 1 が位置 $\vec{r_1}$ に,質量 m_2 の質点 2 が位置 $\vec{r_2}$ に,質量 m_3 の質点 3 が位置 $\vec{r_3}$ にある.重力加速度を方向も含めてベクトル \vec{q} で表す.
 - (1-1) 重力が質点1に及ぼすトルク \overrightarrow{N}_1 , 重力が質点2に及ぼすトルク \overrightarrow{N}_2 , 重力が質点3に及ぼすトルク \overrightarrow{N}_3 を求めよ.

$$\overrightarrow{N}_1 = \overrightarrow{r}_1 \times (m_1 \overrightarrow{g}), \quad \overrightarrow{N}_2 = \overrightarrow{r}_2 \times (m_2 \overrightarrow{g}), \quad \overrightarrow{N}_3 = \overrightarrow{r}_3 \times (m_3 \overrightarrow{g})$$

(1-2) 3質点の全質量を $M := m_1 + m_2 + m_3$ として、3質点の重心の位置 \overrightarrow{R}_G を求めよ.

$$\overrightarrow{R}_G = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2 + m_3 \vec{r}_3}{M}$$

(1-3) 位置 \overrightarrow{R}_G に質量 M の質点がひとつあるとき、重力がこの質点に及ぼすトルク \overrightarrow{N} を求めよ.

$$\overrightarrow{N} = \overrightarrow{R}_G \times (M\vec{g})$$

(1-4) $\overrightarrow{N} = \overrightarrow{N}_1 + \overrightarrow{N}_2 + \overrightarrow{N}_3$ が成り立つことを示せ.

$$\overrightarrow{N} = \overrightarrow{R}_G \times (M\vec{g}) = \left(\frac{m_1 \vec{r}_1 + m_2 \vec{r}_2 + m_3 \vec{r}_3}{M}\right) \times (M\vec{g}) = (m_1 \vec{r}_1 + m_2 \vec{r}_2 + m_3 \vec{r}_3) \times \vec{g}
= (m_1 \vec{r}_1) \times \vec{g} + (m_2 \vec{r}_2) \times \vec{g} + (m_3 \vec{r}_3) \times \vec{g}
= \vec{r}_1 \times (m_1 \vec{g}) + \vec{r}_2 \times (m_2 \vec{g}) + \vec{r}_3 \times (m_3 \vec{g}) = \overrightarrow{N}_1 + \overrightarrow{N}_2 + \overrightarrow{N}_3$$

- 問題 2 質量が m, 長さが a で太さが一様な棒を、水平な床の上から垂直な壁に立てかける。棒を傾けていくとき、棒と壁の角度 θ がどれだけになると滑り出すかを調べる。棒と床、棒と壁の間の静止摩擦係数をそれぞれ μ_1 , μ_2 $(0 \le \mu_1 < 1, 0 \le \mu_2 < 1)$ とする。
 - **(2-1)** 棒が滑り始める直前のときの、床、壁が棒に及ぼす垂直抗力をそれぞれ N_1 , N_2 として、水平方向のつりあいの式を書け、

$$N_2 = \mu_1 N_1$$

(2-2) 鉛直方向のつりあいの式を書け.

$$mg = \mu_2 N_2 + N_1$$

(2-3) 棒と床の接点まわりのモーメントのつり合いの式を書け.

$$mg\sin\theta = 2N_2\cos\theta + 2\mu_2N_2\sin\theta$$

(2-4) 上の3式から N_1, N_2, m を消去し、棒が滑り始める角度 θ を求めよ。

水平のつり合いを鉛直のつり合いの式に代入すると,

$$mg = \mu_2(\mu_1 N_1) + N_1 = N_1(1 + \mu_1 \mu_2)$$

となる. また, $t := \tan \theta$ とするとモーメントのつり合いの式は

$$mgt = 2N_2(1 + \mu_2 t) = 2\mu_1 N_1(1 + \mu_2 t)$$

となるので, 最初の式とあわせて

$$mgt = N_1(1 + \mu_1\mu_2)t = 2\mu_1N_1(1 + \mu_2t),$$

$$(1 + \mu_1\mu_2)t = 2\mu_1(1 + \mu_2t),$$

$$(1 - \mu_1\mu_2)t = 2\mu_1,$$

$$t = \frac{2\mu_1}{1 - \mu_1\mu_2}$$

より,滑り始める角度は $\theta = an^{-1} \left(rac{2\mu_1}{1 - \mu_1 \mu_2}
ight)$

(2-5) 滑らかな床ならば、壁がどんなに粗くても棒を立てかけることはできないことを示せ.

 $\mu_1=0$ のとき、任意の μ_2 に対して(どんなに μ_2 が大きくても)滑り始める角度は $\theta=0$ となる.

(注)

 $\frac{\partial \theta}{\partial \mu_1} > 0$, $\frac{\partial \theta}{\partial \mu_2} > 0$ より、床、壁ともに最大静止摩擦力になったとき、棒は滑り始める.