|問題1| 以下の量を,有効数字1桁程度の大雑把な計算で求めよ.力の単位は [N] として求めよ.

- (1-1) 体重 $50 \log$ の人が 2 人,1 m 離れて立っているときに 2 人の間に働く万有引力の大きさ F_G を求めよ.ただし,万有引力定数を $G = 7 \times 10^{-11} [\mathrm{Nm}^2 \mathrm{kg}^{-2}]$ とする.
- (1-2) 1[C] の電荷が2つ、1m 離れて存在しているとき、これらの間に働くクーロン力の大きさ F_C を求めよ、ただし、 $\frac{1}{4\pi\epsilon_0}=9\times 10^9 [{\rm Nm}^2{\rm C}^{-2}]$ とする.
- (1-3) F_C は F_G の何倍か.

問題 $\mathbf{2} \mid x$ 軸上, x = 0 に電荷 q, $x = \ell$ に電荷 -2q がある. ただし, $\ell > 0, q > 0$ とする.

- (2-1) x = 0 の電荷 q は、どの向きにどれだけの力を受けるか.
- (2-2) $x = \ell$ の電荷 -2q は、どの向きにどれだけの力を受けるか.

問題 $3 \mid xy$ 平面内の点 A:(a,0) に電荷 q, 点 B:(0,b) に電荷 q' がある.

- (3-1) A の電荷が B の電荷に及ぼす力 \overrightarrow{F}_1 を求めよ.
- (3-2) カ \overrightarrow{F}_1 の大きさ f_1 を求めよ.
- (3-3) Bの電荷がAの電荷に及ぼす力 \overrightarrow{F}_2 を求めよ.
- (3-4) カ \overrightarrow{F}_2 の大きさ f_2 を求めよ.

<u>問題 4</u> x 軸上, x=0 に電荷 q, $x=\ell$ に電荷 4q がある. さらに, 第三の電荷 q' を $x=x_0$ に置いたら, 全ての電荷に働く力が打ち消しあってゼロになった.

- (4-1) $x = x_0$ の電荷 q' が力を受けないという条件から、 x_0 を求めよ.
- (4-2) x = 0 の電荷 q が力を受けないという条件から、q' を求めよ.
- (4-3) $x = \ell$ の電荷 4q が受ける合力を求め、ゼロになっていることを確認せよ.

問題 g 軸上に線密度 ρ の線電荷が、 $-\infty < y < \infty$ に一様に分布している. 点 (a,0) に点電荷 q を置き、この線電荷から受ける力を調べる. ただし、 ρ,a,g は全て正とする.

- (5-1) 点電荷qが、線電荷の微小部分 $y \sim y + \mathrm{d}y$ から受ける力 $\overrightarrow{\mathrm{d}F}$ を求めよ.
- (5-2) 点電荷 q が線電荷全体から受ける力 \overrightarrow{F} を求めよ. ただし, $y=a\tan\theta$ として, θ で積分せよ.